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Abstract. The procedure for getting an effective Lagrangian and Hamiltonian for the 
low-lying states of an interacting string, by integrating over some ultraviolet degrees of 
freedom, is extended to the fermionic variables. The perturbation on the fermionic levels 
is determined and a crossed term which describes the mutual effect of the bosonic and 
fermionic excitations is also obtained. 

1. Introduction and summary of the procedure 

The derivation of an effective string action, which describes the dynamics of the lower 
states taking into account the effect of higher excitation, has been considered in many 
papers, with particular attention to the dynamics of the massless states [l]. A version 
of this treatment has been presented where the kind of low-lying states is not specified 
at the beginning, provided that the higher excitations, whose virtual effect must be 
described by the effective action, are really higher than the states which are explicitly 
studied. Since this treatment has been presented for the open bosonic string [2] it is 
natural to extend the same procedure to the fermionic degrees of the open string. The 
general attitude, as well as the formalism and the notation will be very similar to the 
one used in [2], which will, hereafter, be referred to as ‘the bosonic case’. 

The way in which the fermionic degrees of freedom are introduced in the string is 
not uniquely defined; the model chosen for the present study is the open superstring 
(with Ramond boundary condition [3]), as is presented, for instance, in the review by 
Green [4]. All the treatment is done in the light-cone gauge and by dealing explicitly 
with the partition function; at the end an effective Hamiltonian is derived. In this final 
derivation the simultaneous presence of bosonic and fermionic variables, which until 
that moment can be treated separately, has an explicit role. As in [2] only planar 
configurations will be considered; however, some consideration about the non-planar 
configurations will be presented at the end. 

The interaction of the strings is always described in terms of splitting and rejoining 
processes, also for the fermionic coordinates [5]; moreover, since the action is quadratic 
in the chosen gauge, the partition function factorises in the bosonic and fermionic 
part, and only this last factor will be elaborated in the present paper. 

The fermionic factor of the partition is 

Zf= 9$91+/1’ e-.*f+h 1 %+K?&!J+ e-&f+.  . . . (1 .1)  
Co(0,P 1 Ci(O,P;Do.To;b) 
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The second term corresponds to a splitting taking place at uo and lasting from T’ = T~ - i b  
to T I ’ =  TO+fb. 

The spinorial part of the action is, in the Euclidean world sheet, 

and has been obtained, with the standard position $‘ = S‘ + 
expression [ 4 ]  in terms of the Majorana spinors S, 

out of the original 

The ‘external’ spinorial index r will be omitted whenever possible; the internal spinorial 
index takes two values ( U ,  D )  and the Pauli matrix T~ acts on them?. Following the 
procedure already described in [2], the second addendum in ( 1 . 1 )  will be recast in the 
form 

[ dTO duo 9$9$’ e-&f 

= e-&r { dTO duo 8 [ $ ( ~ ’ ) ,  $ ( T ” ) ,  cr0]9$9$’. (1.3) 

At this point a local leading term will be extracted, which we will call E ( T ~ ,  go). 

The same considerations already used in the bosonic case allow us to look for an 
exponentiation of this term, expressing the presence of many non-interacting splitting 
processes. In this way an effective Lagrangian is obtained: 

Le,= LT-AF-AE (1.4) 

where L,  is the total free Lagrangian, E the effective interaction term of fermionic 
origin and F the already calculated effective interaction term of bosonic origin. 

2. Determination of the interaction term 

2.1. Detailed description of the splitting and rejoining process 

In this section the actual calculation of the factor 8 of equation (1.3) is performed. 
The elementary process is the fact that the spinorial field $(a, T )  at a certain point 
u0, at an instant T’ splits into two spinorial fields cp and x, which, in turn, rejoin again 
into a unique field $ at the instant T”. Since the relevant fact of this process is a 
sudden change of the boundary conditions it is worthwhile starting with a detailed 
consideration of these conditions and of their conceptual and technical consequences. 

= t+hD(?r), 
suggest the representation 

The boundary conditions [3] for the spinor $, i.e. I#Jv(0) = I#JD(0), 

( 2 . l a )  

t The Pauli matrices are always written in boldface, T ~ ,  in order to distinguish them from the evolution 
parameter T. 
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For functions of this kind the S function, in the variable a, is provided by the matrix 

t (u,  a') = (2rr)-I eiku(e-iku'+ Tx eiku') k = O , * l , * 2  , . . . .  ( 2 . 2 )  

cp(c+), 

k 

At the value T '  of the evolution parameter T two spinorial functions are produced, 

They have such boundary conditions, at the point (0, a,) and (U, ,  rr), that they 
allow the representation 

( 2 . l b )  

( 2 . l c )  

y h e n  considering functions with these boundary conditions, the representation of 
the 6 function is modified in an obvious way. This modified expression can be used 
to express the statement that cp (and x) represent an evolution of + which is continuous 
in T also at T = T' 

and analogously for U. 
The representation ( 2 . l b )  and ( 2 . 1 ~ )  implies cpu(u,) = cpD(uo); xu(uo) =,yD(uo), 

which is not, in general, true for +( U,); thus there must be a discontinuity at the point 
a, both in cp and in ,y and therefore a 8 singularity in cp' (and x'), if the evolution 
parameter is either T' or 7". Using the notation already introduced in [2] this singularity 
can be expressed as 

and 

( 2 . 3 ~ )  

(2 .3b)  

There is an obvious difference with respect to the bosonic case: the singularity 
already shows up at the level of the first derivatives, and this happens because the 
spinorial part of the original action contains only first derivatives. The general pro- 
cedure, however, continues to be the same as in the bosonic case, so the interaction 
term can be obtained starting from the formal quotient 

The relevant T integration runs from T' to 7". Using the standard parametrisation 
T = 7'+ bu, b = 7"- T' the action d,,, is 

We must now expand + with fixed boundary conditions in U :  

+ ( U )  = (1 - U )  +i + u+f+ C q m f m  ( U )  m =0,  * I ,  1 2 , .  . . 
m 
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and the third addendum must be zero at the limits U = 0 , l .  These conditions cannot 
be implemented by basis functions f m ,  if we ask them to be eigenfunctions of the 
differential operator, because id, is of first order. So the basis fm is simply chosen to 
bet 

m=0 ,+1 ,*2 ,  . . .  (2.6) fm = e 2 x i m u  

and the constraint shifted to the functional variables 1I’ requiring that 

p P m = 0 .  
m 

With this kind of expansion, by performing some partial integration in (see equation 
(2.5)) and carrying out the integration in U, the following expression for A, is obtained: 

with the positionst 

s, = i ( $; + $:I ( $r - 4,) + f b [ ( $; T ~ @  I. + 4: 7&t) + 4( $: 7 4  + 4 : 7,$ I.) I ( 2 . 9 ~ )  

J I ~ ”  = i( 4; - $ 7 )  +- (4;’ - $ 1 1 ’ ) ~ ~  (2.9b) 

J r ” =  -$b($,$’+ $;’)T~ ( 2 . 9 ~ )  

K ? ’ = g  T z ( $ ~ - $ ; )  n f O  (2.9d) 

Kbo’ = $bT,( + $:) + i( GI) (2.9e) 

ib 
2 n-n 

n # O  

ib 

DE?, = S m , ( - 2 ~ n  + bT,d,). (2.9.f) 

By introducing explicitly the constraint (2.7) into (2.8) another form is obtained for 
A+, namely 

A+ = S ,  + JAW,, + Wk Km + lI’kDmfllI’,, m,n=*1,+2,  . . .  (2.10) 
fl  m mfl 

with 

i b  
J’, =i($: -$7)+~b($ , ’+$rr)7 ,+- ($; ’  - 4 : ‘ ) ~ ~  ( 2 . 1 1 ~ )  

2 n-n 

ib 
K m  = -i($r- $ I )  -1b%($;+ $;)+G T A $ ; -  $:I 

D,, = Smn(-2xn + bT,d,)+ b7,d,. 

(2.1 1 b) 

(2.11c) 

It must be noted that after these transformations the differential operator D is no 
longer diagonal in (m, n ) .  

In order to perform the functional integration over the anticommuting variables 9 
it is necessary to invert the operator D,, ( J ~ ) ;  more precisely it is necessary to determine 
the matrix such that 

D,m(&)rmfl(U, U ’ )  = S,,S (̂U, 4. (2.12) 

t Usually the discrete variables conjugate to (T are called k, I ;  those conjugate to U are called m, n, j .  
f The ‘prime’ indicates the derivative with respect to U. 
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Given the actual expression of 8 (2.2) it is natural to look for the following form for 

rmn(u, U ' )  = (Z,T)-' ymn(k)  eikc(e-iku'+  IT^ eiku'  1 (2.13) 

r: 

k 

and it is directly verified that (2.12) is satisfied when one has 

m, n # 0. 
2i7, tanh(fbk) 1 

- S m n  i b k r , - 2 ~ n  Y m n ( k ) = ( i b k ~ z  -2xm)(ibk.r, - 2 ~ n )  

The fact that ymn is not diagonal is a direct consequence of the structure of D(d,) in 
( j ,  m) .  

2.2. Functional integration over the fermionic variables 

With these tools one can now proceed in performing the functional integration 

9999' = e-"*A, 5 
where A, is the determinant factor, coming out of the quadratic part of the action and 

V * - 2 r  - l ( l  d a S , - L  1 d u d u ' J ~ ( u ) r m n ( u , u r ) K n ( u ~ ) ) .  (2.14) 

It is now evident that in the same way the other functional integrations appearing 
in (2.4) are performed resulting in the expressions V, and Vx where the role of $ both 
in S and in J and K is played in turn by cp and x, the limits of (T are respectively 
between 0 and uo and between uo and T. Moreover two other determinant factors, A, 
and Ax, are generated. 

In inserting the resulting expressions for V into the quotient % (2.4) the first term 
we see is 

B = e x p  ( 2 ~ ) - '  du(S,-S,-S,) . [ 1  I 
According to the definition (2.9a) and using the continuity in IT it is evident that 

for every U # uo the term S ,  is compensated either by S, or by S,; at the point U = uo, 
due to ( 2 . 3 ~ )  and (2.3b) the contribution from S, compensates the contribution from 
S,, so in conclusion B = 1. In practice we can drop the terms S everywhere. 

In the subsequent treatment the same approach will be employed as was used for 
the bosonic case, i.e. considering the parameter b small and expanding the expressions 
in powers of it. To begin we expand y and r: 

1 1 1 
ymn (k)  = - S,, + i bkr, 7 ( - + S m n ?  

2 r n  (271) mn 

n 2  
I *  
n 

rmn(u, U ' )  = Smn-  S ( ( r ,  a')  + S,,,') drrs*(u, U ' )  +O(bZ).  

After having dropped the term S we can write 

(2.15a) 

(2.1 5 b) 
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where the star product in all cases means the summation over the indices m and n, 
from -CO to +CO, excluding the zero, integration in U from 0 to IT for the $ terms, 
from 0 to U, for the cp terms, and  from a, to IT for the ,y terms. 

The terms J,, J,, and  so on, contain two kinds of addenda, because they depend 
on the U derivatives of cp and x; looking at  the definitions (2 .3)  a first term contains 
cp, cp' and a second one 6(a- go). Let us write 

J i  = ( J :  ) c - S ( - uO) ( J  i) D .  (2.17) 
Owing to the continuity in 7 the first part matches with the corresponding ( J i )  

term, while the second is new. Inserting the decomposition (2.17) together with the 
analogous ones into (2 .16)  and using for r the first term of the expansion (2 .15b) ,  we 
see that all the contributions cancel (as happens for the S terms), except for the case 
when we take the singular part for both J and K,  because in this case the cp and x 
terms add  up. In this situation the expansion (2 .15b)  would give rise to a S2-like term, 
and this shows that in this case the expansion itself is not allowed and the full expression 
of r must be used. 

In conclusion the contribution of the discontinuous part is explicitly written as 

Vt - V, - Vx I D = 2 C J L,,, g o )  r mn ( (+o 3 ~ o )  KD,, ( g o )  (2.1 8a)  
mn 

(2.18 b )  

( 2 . 1 8 ~ )  

( 2 . 1 8 d )  

and this last expression holds both if we consider the r associated with cp, and defined 
between 0 and u0, and if we consider the r associated with x, and defined between 
U, and IT. 

It is a purely technical task now to evaluate the three sums Em,ymn(k) ,  
Em,,m-'ymn(k) and Em,(mn)- 'ymn(k) .  By changing simultaneously in the term y :  
k +  -k, m + -m, n + -n it results that the first and the third term are odd in k and 
therefore they will yield zero in the subsequent sum over k, so the really relevant sum 
is the second and  for it we get 

2.irmn m ( b k )  ( b:, bk) 2 
1 1  -E - - y m n ( k ) = y  1--tanh- = A k .  

In order to extract the leading term in b, the sum over k is treated with the Euler- 
McLaurin [ 6 , 7 ]  summation formula obtaining 

The correction to the formula, which can be found limiting the sum (and integration) 
between K and -K,  will produce no power terms in b, because all the derivatives of 
the integrand go to zero at  infinity. The expansion is known [ 7 ]  to be not convergent, 
and this signals the presence of an  essential singularity in b, as was found, in a simpler 
way however, for the bosonic case. 

Since we are interested in the leading terms in b we perform a b expansion also 
in J and K using 

$,,?= +Qb2Jc +. . , $c = $ ( i ( T ' +  7")) 
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with the result 

V, = V, - V, - V, I = i 1 4 ~ - ~ 1 ( 3 )  b2[ I&.( 1 - 7,) 4, - 4>( 1 - T,)$~] + O( b4). (2.19) 

Contrary to what occurs in the bosonic case the terms in b4 unavoidably involve 
terms containing 4, which are therefore more unusual and of less straightforward 
interpretationt. 

2.3. Calculation of the determinant 

What has not been taken into account explicitly, up to now, is the relevance of the 
functional determinant, arising from the integration over the oscillating functions. 

As has been noted in ( 2 . 1 1 ~ )  the differential operator, whose determinant must be 
calculated, is no longer diagonal. The operator has, however, the structure: 

Mmn = Fi"'Sm, + c 

and it is found that 

det M m n = n F ( " ' (  n l+cz(F")'). m (2.20) 

To prove this result one can start from M (  t )  = tF + c with the indices m, n running 
from 1 to N. Then det M ( t )  = P ( t )  is a polynomial in t of order N :  

N 

P ( t )  =z, ( s ! ) - l t s P ~ s ) ( o ) .  
1 

Using the standard rules to calculate the derivative of the determinant one recognises 
that only the derivatives of order N and N-1 may be different from zero, because 
the others have at least two equal rows and columns. Since 
obtained for t = 1, the expression in (2.20) is easily derived. 

We can now calculate explicitly A,, taking the limit N + CO 

the required result is 

whenever possible: 

n = N  / \ 

A, = n '.n' (ibl- 27rn) 
I n = - N  

sinh(fZb) =n (-47r2)N(N!)2 ilb coth(i1b) 
I f l b  

In A* = 1 [2 In N! + N In( - 4 ~ ~ )  +In cosh(fZb)]. 
I 

When we also calculate In A, and In A, we must apply a common cutoff on the 
wavelength. This cutoff transfers into a cutoff in I which is proportional to 7r for A,, 
to go for A,, to pa for Ax.  In this way the terms independent of I cancel in the difference 
of the logarithms, and every dependence on N vanishes. This property in particular 
expresses the independence of the final result of the normalisation of the basis functions, 
(2.6). 

t Quantum theories with higher (time) derivatives have, of course, been treated in different contexts [8]. 
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The rest of the procedure is strictly analogous to what was done in [ 2 ] :  the term 
In cosh(i1b) is expanded in series? 

In cosh(4lb) = C C,( lb)2' 
r 

when we consider A,, while we get 

c cr ( lb57 / g o )  or C Cr(lb57/pO)" 
r r 

for AV or A x .  
Now a common regularising procedure is set up 

12' ~ C 12' e-+llo = ( c~a /ap )~ ' [$  t a n h ( p / 2 a )  - - ; I  
I  I 

with a = T, ao, po respectively. Expanding tanh now in p we verify that only the 
singular contribution survives in the limit p + 0, which yields 

( 2 r ) !  ( c ~ / p ) ~ ~ + ' .  

( 2 r ) !  ( b T ) 2 r p - 2 r - 1 (  57 - a. - p,) = 0 

This must be multiplied by ( b ~ / a ) ~ '  so that the result is 

identically in r ;  then the artificial cutoff, which however played an important role, can 
be finally removed and the final result is 

In A, -In A V  -In A, = 0. 

3. Effective Lagrangian and Hamiltonian 

If we limit ourselves to the terms of order b2,  for the fermionic part, then we can 
proceed rapidly with the next steps. According to the discussion presented in [ 2 ]  the 
term obtained can be exponentiated. In this way we get a term exp(A s da,  d.r, e-"T). 
It is useful at this point to remember the analogous treatment for the bosonic part, 
from where we obtained the corresponding term: exp(A j d a ,  d7, eT2). 

We put together the exponentials and then expand in b remembering, however, 
that the term ( VT)2, which is also produced, cannot be taken as a correct one since it 
is of order b4 and terms of order b4 were left out in defining V,. 

So finally we can say that to order b2 we simply get an effective interaction term 
of the type i A d $ ' ( l -  T . ~ ) $ ;  the value of a is obtained from (2.19). 

Up until now we have worked with a path integral formalism and with a Euclidean 
metric, in performing back the time rotation and in setting the operator formalism; 
this new term, which contains 4, has the effect of making $' no longer conjugate to 
$; in order to come back to standard conjugate variables it is necessary to introduce 
a new field w by means of the definition 

$ = = ( P + Q T , ) W .  

It is easily found that the canonical commutation relation 

{ W ( U ) ,  w i ( a ' ) } =  8 ( u ,  d) 

f Using In cosh x = 5,' tanh y dy the coefficients C, can be expressed in terms of the Bernoulli numbers. 
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requires 

( P +  Q ) 2  = 1 ( P  - Q)'(I + 2 a )  = 1. 

In this way the original Hamiltonian is transformed in the following way: 

dai,btiT,d,J/ = (1+2a)  daw"i7,d,w. (3.1) I I 
This result shows that, just as in the bosonic case, the only effect we obtained at the 
order b2 is a variation of the level splitting which is rigid, i.e. independent of the 
particular level. In particular, since the modification is multiplicative the zero level is 
not affected by the correction. 

It can also be noted that at the order b4, taking into account the presence of the 
bosonic term together with the fermionic one we find a cross term ic,ax"i,b'( 1 - ~ ~ ) i , h .  

With respect to the variables IC, the x'  terms may be treated as numbers so that we find 
an expression having the same form of (3.1). In this case the result is that, if we 
consider configurations built up both by fermionic and by bosonic excitations, then 
among the fermionic levels a variable splitting is introduced, i.e. a splitting which 
depends on the bosonic population of the configuration?. 

4. Conclusions and further considerations 

The construction of an effective Hamiltonian representing, in the functional space of 
the free string, the effect of string interaction in a well defined limit has been extended 
to the fermionic coordinates. The extension has been performed following as strictly 
as possible the procedures used to deal with the bosonic case. Some technical 
differences and a certain amount of formal complication turned out to be unavoidable; 
they have not, however, been very large because the aim of the paper is limited to the 
sole investigation of the partition function. So the more elaborate formal procedures 
needed to project the external fermionic states are not required [ 5 , 9 ] .  In so doing, 
only the static effects of the higher-frequency dynamics can be determined, in the form 
of level shifting and level splitting, while the effects on the scattering amplitudes, which 
are certainly present, are not investigated. The static effects are of the same type as 
for the bosonic case, since the effective Hamiltonian contains also quartic terms: a 
cross term between bosonic and fermionic coordinates is produced. The calculation 
of a pure quartic term in the fermionic variables is a purely technical problem although 
complicated and tedious. The exponentiation procedure, which ultimately allows the 
definition of the effective action raises two questions. The first is the possibility of 
representing the effects of splitting and rejoining as a local interaction term. This 
possibility was already discussed in [2] and reconsidered in the present paper. The 
definition of terms up to the fourth order in the coordinates leads to leading local 
expressions. On the contrary, by going further in the powers of coordinates, the aspect 
of the result changes. To be consistent, in the expansion in b, essentially non-local 
terms come into the game; at this point the exponentiation becomes more questionable. 
One could still look for a locality in T (for b small) but an effective action non-local 

t Evidently the statement may be reversed: there is a variable splitting in the bosonic levels, depending on 
the fermionic population. 



4340 G Calucci 

in (+ does not give an  interesting insight into the problem; it is better to say that the 
whole procedure is consistent and interesting u p  to the quartic terms in the coordinates, 
both bosonic and fermionic. The second question concerns the role of more complicated 
topologies. A preliminary investigation has been performed for the typical case where 
there is a twist of one of the two fragments of the string. When this happens, between 
the splitting and  rejoining point a non-orientable evolution surface is generated. If 
this process happens at fixed go and the limit b+O is taken then a singularity is 
generated in terms like V, or  like T in the bosonic case where this investigation was 
done. The singularity in turn yields a non-local term and it can be foreseen that the 
overall effect of such a term on the partition function H is to produce a term going to 
zero faster than any power of b. This result is, however, true at fixed u0; if this is not 
the case, and  we let r0 go to zero (or even to n-) together with b, the zero is much 
milder. So this preliminary look at the problem suggests that the introduction of 
twisted configurations will give rise to effective terms concentrated at the endpoints 
of the open string. The general considerations presented in [2] about the relationship 
of this procedure to other treatments apply also to the present extension. So the whole 
treatment is a way of representing some leading ultraviolet effects of higher degrees 
of freedom in terms of a local effective Lagrangian and yields an  unambiguous 
answer-the extension to dynamical problems, i.e. to scattering amplitudes, involves 
non-trivial difficulties but there is nothing in the procedure that prevents this possibility. 
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